Enhanced expression of the M2 isoform of pyruvate kinase is involved in gastric cancer development by regulating cancer‐specific metabolism
نویسندگان
چکیده
Recent studies have indicated that increased expression of the M2 isoform of pyruvate kinase (PKM2) is involved in glycolysis and tumor development. However, little is known about the role of PKM2 in gastric cancer (GC). Therefore, we examined the expression and function of PKM2 in human GC. We evaluated PKM1 and PKM2 expression by quantitative RT-PCR in gastric tissues from 10 patients who underwent gastric endoscopic submucosal dissection, 80 patients who underwent gastrectomy, and seven healthy volunteers, and analyzed the correlation with clinicopathological variables. To assess the function of PKM2, we generated PKM2-knockdown GC cells, and investigated the phenotypic changes. Furthermore, we examined the induction of PKM2 expression by cytotoxin-associated gene A (CagA), a pathogenic factor of Helicobacter pylori, using CagA-inducible GC cells. We found that PKM2 was predominantly expressed not only in GC lesions but also in the normal gastric regions of GC patients and in the gastric mucosa of healthy volunteers. The PKM2 expression was significantly higher in carcinoma compared to non-cancerous tissue and was associated with venous invasion. Knockdown of PKM2 in GC cells caused significant decreases in cellular proliferation, migration, anchorage-independent growth, and sphere formation in vitro, and in tumor growth and liver metastasis in vivo. The serine concentration-dependent cell proliferation was also inhibited by PKM2 silencing. Furthermore, we found that PKM2 expression was upregulated by CagA by way of the Erk pathway. These results suggested that enhanced PKM2 expression plays a pivotal role in the carcinogenesis and development of GC in part by regulating cancer-specific metabolism.
منابع مشابه
Expression profile of ZFX isoform3/variant 5 in gastric cancer tissues and its association with tumor size
Objective(s):Previous studies demonstrate that changes in pre-mRNA splicing play a significant role in human disease development. Furthermore, many cancer-associated genes are regulated by alternative splicing. There are mounting evidences that splice variants which express predominantly in tumors, have clear diagnostic value and may provide potential drug targets. Located on the X chromosome, ...
متن کاملPhosphorylation of Ser6 in hnRNPA1 by S6K2 regulates glucose metabolism and cell growth in colorectal cancer
Abnormal glucose metabolism is critical in colorectal cancer (CRC) development. Expression of the pyruvate kinase (PK) M2 isoform, rather than the PKM1 isoform, serves important functions in reprogramming the glucose metabolism of cancer cells. Preferential expression of PKM2 is primarily driven by alternative splicing, which is coordinated by a group of splicing factors including heterogeneous...
متن کاملPyruvate kinase M2-specific siRNA induces apoptosis and tumor regression
The development of cancer-specific therapeutics has been limited because most healthy cells and cancer cells depend on common pathways. Pyruvate kinase (PK) exists in M1 (PKM1) and M2 (PKM2) isoforms. PKM2, whose expression in cancer cells results in aerobic glycolysis and is suggested to bestow a selective growth advantage, is a promising target. Because many oncogenes impart a common alterati...
متن کاملPyruvate kinase: Function, regulation and role in cancer.
Pyruvate kinase is an enzyme that catalyzes the conversion of phosphoenolpyruvate and ADP to pyruvate and ATP in glycolysis and plays a role in regulating cell metabolism. There are four mammalian pyruvate kinase isoforms with unique tissue expression patterns and regulatory properties. The M2 isoform of pyruvate kinase (PKM2) supports anabolic metabolism and is expressed both in cancer and nor...
متن کاملInvestigation of Histone Lysine-Specific Demethylase 5D (KDM5D) Isoform Expression in Prostate Cancer Cell Lines: a System Approach
Background: It is now well-demonstrated that histone demethylases play an important role in developmental controls, cell-fate decisions, and a variety of diseases such as cancer. Lysine-specific demethylase 5D (KDM5D) is a male-specific histone demethylase that specifically demethylates di- and tri-methyl H3K4 at the start site of active genes. In this light, the aim of this study was to invest...
متن کامل